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Abstract
An hybrid optimization procedure based on two stochastic algorithms, a genetic
algorithm and simulated annealing, is proposed and applied to the problem of
extracting a crystal configuration from grazing incidence x-ray diffraction data.
Problems like this, with many parameters and very complex fitness landscapes,
can be optimized by running a genetic algorithm and then refining the search
with a simulated annealing procedure. A case study of finding the structure of
a self-assembled monolayer of n-alkyl thiols (n = 10) on the (111) surface of
gold is reported.

PACS numbers: 02.60.Pn, 05.10.Gg, 61.10.−l, 61.72.Cc, 87.19.La, 61.10.Eq

1. Introduction

The understanding of conformational properties of organic molecules, native structures in
protein folding, minimum potential energies in atomic clusters or, in general, complex multi-
parameter optimization problems encountered while testing theories against experiments,
are today subjects of considerable interest. Very often these difficult problems are intractable
because deterministic optimization algorithms get trapped on a local minimum. Most methods
adapt the so far best solution in the direction in which this current solution is improved and the
algorithm stops when no more improvement is observed. In practice, however, one most likely
gets a sub-optimal solution. The ability to circumvent such local minima and keep improving
the solution toward the global minimum is the goal of current study.

Beyond the classical deterministic methods that are based on the calculation of the
derivative at the current position (gradient method) or the performance of trial steps (simplex
optimization), elegant and new methods, based on the diffusion equation [1], quantum
annealing [2], relaxation of lattice structures [3], etc, have been proposed to solve hard
optimization problems. But when the complexity of the problem is high, the failure of these
deterministic methods in finding global minima is the usual result.
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Blind-search stochastic techniques, based on the analogy with natural phenomena, have
also been proposed to solve hard problems in chemistry and physics. The two best-known
techniques are simulated annealing [4] and genetic algorithms [5, 6]. Genetic algorithms
(GA), as global optimization procedures, can be used in both discrete as well as continuous
problems. They search efficiently in different regions of the space of solutions and, even
if they get trapped on a local minimum, they can also escape from them. GAs are based
on the concept of the survival of the fittest: a population of individuals is created using
genetic operators, the fittest individuals in a given generation survive and reproduce in the
next generation. The process of creating new generations, through crossover and mutation
operators, is repeated until some stop criterion is satisfied (quality of solution, number of
generations or computer time used). The simulated annealing (SA) strategy, on the other
hand, mimics the slow cooling of matter as it evolves towards a low-energy crystal structure.
The SA algorithm functions as follows: taking one solution, a new solution is generated; if
the new solution is of better quality, it is accepted, otherwise the new solution is accepted
according to a probability that depends on the current temperature of the system and an
equilibrium requirement. Thereafter, the temperature is decreased according to a cooling
schedule, seeking equilibrium in every step. At high temperatures the SA algorithm explores
a greater region of the feasible space; as the temperature decreases, the algorithm searches
smaller and smaller regions of the feasible space and eventually converges to an optimal
solution.

Although many difficult optimization problems have been solved by using either GA or
SA, it would not be wise to affirm that one of these stochastic algorithms is better than the
other. Indeed, the success of a stochastic method often depends on the experience of the
user and the problem itself. On one hand, GA are excellent at finding the neighbourhood
of the global solution, although due to the inherent discrete nature of the algorithm, that
solution is rarely obtained. Perhaps the best attribute of GA is what many deterministic
methods lack most: the starting solutions are random and are not necessarily in the vicinity
of the wanted one. This is an important feature if one does not know a priori where the
optimal solution in the feasible space is found. On the other hand, avoiding premature
convergence, due to accepting with some probability a worse solution, is a good attribute
of SA. If used properly, SA can also be an effective global optimization algorithm, and
most importantly, SA excels in doing refined searches inside prominent regions. But once
more, the algorithm might get trapped on local solutions when the problem has a great
complexity.

The idea of hybridizing methods in order to strengthen the weaknesses of some
algorithms, has been around in the literature for a long time. This hybridization
can be deterministic–deterministic, stochastic–deterministic and stochastic–stochastic. The
literature abounds with the first ones (see [9]) and more recently with the others
[7, 8].

In this paper, we propose a hybrid optimization method based on GA and SA. Then
we apply this method to the very complex problem of finding the structure of a self-
assembled monolayer of n-alkyl thiols (n = 10) on the (111) surface of gold. This problem
has considerable importance in today’s technology as a model system to understand
supramolecular assembly and wetting [10].

In section 2, we describe the basic elements of the algorithm and write the pseudocodes
of our GA and SA. In section 3, we explain briefly the principles of x-ray diffraction at
low incident angles and write the important formulae used to construct the fitness function.
Results and discussions are presented in section 4 and finally some conclusions are drawn in
section 5.
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2. Description of the method

2.1. Genetic algorithm

The pseudocode for our genetic algorithm is as follows:

GENERATE a population of parameter vectors:

P(t = 0) = {x = (x1, x2, x3, . . . , xN)}(t = 0)
each vector of parameters is analogous to a chromosome.

EVALUATE E(x) for each member of the population P(t)

(E is a fitness function of the N parameters: x = (x1, x2, x3, . . . , xN) to
be optimized), select the best members of the population accordingly.

WHILE (termination condition is not met)
t = t + 1
GENERATE through SELECTION a new population of parameter

vectors P(t) = {x = (x1, x2, x3, . . . , xN)}(t) out of P(t − 1)
APPLY CROSSOVER to the member’s chromosomes of P(t − 1)

according to crossover probability
APPLY MUTATION to the new chromosomes formed according

to mutation probability
EVALUATE E(x) for each member of the population P(t)

END WHILE

Some important concepts of the above procedure are the following:

• Representation. The algorithm must manage a number of N floating point numbers,
grouped into a parameter vector. There are basically two options: a binary and a floating
point representation. The most popular binary representation is the one proposed by
Holland [5], in which chromosomes are strings of mN bytes (zeros and ones), m bytes
per parameter. In Holland’s chromosome structure there is a semantic difference between
this kind of string codification and the real codification of the problem. A floating
point representation often works better for continuous optimization problems [16, 17]
and is the one we use. In this kind of representation the chromosomes are directly the
parameter vectors, thus the length of the chromosomes, N, is m times shorter in this
representation than in the binary one, yielding an easier chromosome manipulation and
better computational times: a suitable size for the population is determined by the length of
the chromosomes and the fact that handling a large population slows down the algorithm.

• Population initialization. The population is formed by a certain number of individuals.
Each individual is a vector parameter of N components, each parameter of each individual
is initialized with a uniform random number between the lower and upper limits of the
parameter. This was repeated with all the members of the population.

• Fitness function. The fitness function is determined by the functionE(x) to be minimized;
the lower the value of E(x), the fitter the individual x.

• Selection scheme. We apply the tournament selection scheme as follows: we randomly
select three different individuals and select the fittest. We implement an elitist strategy in
which the best individual of a generation is copied directly to the next generation.

• Genetic operators. The most used genetic operators are crossover and mutation operators.
In this work we use two types of crossover operators:

(a) Cross1: The offspring are formed through the juxtaposition of parameters of both
parents.
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(b) Cross2: The offspring are formed using a linear crossover based on the arithmetic
combination of corresponding parents using one of the following formulae (the choice
between the three being randomly made):

Parameteri = (Parent1.Parameteri + Parent2.Parameteri)/2; or
Parameteri = (n ∗ Parent1.Parameteri − Parent2.Parameteri)/2; or
Parameteri = (−Parent1.Parameteri + n ∗ Parent2.Parameteri)/2.

The first of these formulae gives simply the middle point between Parent1.Parameteri and
Parent2.Parameteri, the second and third give points closer to the parameters of one parent
or the other. This linear crossover produces enough diversity but is not so disruptive as
Cross1.
The mutation operator modifies only one parameter for each individual mutated. The
modification is made through one of the following formulae:
Parameteri = Parameteri + Sizei ∗ RandomNumber; or
Parameteri = Parameteri − Sizei ∗ RandomNumber.
Parameteri stands for the ith parameter, Sizei stands for the pre-specified size of the
modification for the ith parameter, and integer RandomNumber is between 1 and 20. If
the value of Parameteri is smaller (greater) than the lower (upper) limit we adjust the
value to the lower (upper) limit.

• Probability of applying genetic operators. The probability of making a crossover is unity,
but half of the crossovers are made following the Cross1 rule and the other half following
Cross2. Trial and error is always needed to choose an adequate mutation probability.

• Stop criterion. We stop after a given number of populations has been generated or after
the fitness function has converged to a value that may be a minimum. If no convergence
is achieved with the given number of populations, the algorithm can restart from the last
generation.

2.2. Simulated annealing

The basic pseudocode for the simulated annealing algorithm is:

k = 0
u = initialsolution
t = initialtemperature
WHILE termination condition

WHILE fixed-temperature condition
v = Perturb(u)
if (f (v) � f (u)) or random[0, 1] < e(−(f (v)−f (u))/ck)

then u = v

END WHILE
k = k + 1
t = t ∗ α

END WHILE

The main concepts of the algorithm are defined as follows:

• Initial temperature. A very low initial temperature is used in order to make the algorithm
more localized and speed convergence to an optimal point in the space of solutions.

• Condition of repetition at a fixed temperature. This condition was controlled considering
the number of perturbations made and the number of accepted perturbations.

• The perturbation function. The perturbation function is the same as the one used for the
GA mutation operator.
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• The rate for lowering the temperature. We define a low rate of 0.50 in order to have a
low consumption of time during the SA phase and to promote fine tuning (local search)
rather than exploration (extended search).

• The criterion for termination. This criterion takes into account the current temperature.
When this temperature takes a pre-determined value the algorithm ends. The minimum
temperature used was 0.05.

• The energy function is defined as the function to be minimized.

2.3. GA and SA integration

The coupling of the simulated annealing and the genetic algorithm was done in such a way that
the GA creates a complete generation (using selection, crossover and mutation). Thereafter,
the simulated annealing algorithm is run in order to do a local search to improve a subset of the
best individuals. Then we run the GA again and so on.

This particular coupling hopefully takes advantage of the best of each of the two
algorithms. On one hand, the GA is an excellent approach to exploring the search space, but
has a slow rate of convergence to an optimal solution. The simulated annealing is an excellent
option to fine tune the GA solution set in an efficient manner. It should be emphasized that in
the problem studied here, neither GA nor SA alone find optimum solutions.

3. A study case

The hybrid optimization method presented above, has been used to look for crystal structures
compatible with experimental data of grazing incidence x-ray diffraction from CH3(CH2)9SH
self assembled on the (111) surface of gold. The experimental study was performed by Fenter
et al [10]. Based on the experimental data and following a fitting procedure, it was found that
a monolayer structure which consists of a nearly hexagonal two-dimensional arrangement of
the hydrocarbon chains with a dimerization of the sulfur head groups, accommodated through
a gauche bond, was quite compatible with the experimental results (hereafter we will call the
structure proposed by Fenter et al, Fenter’s disulfide structure, or Fds). The possibility of
dimerization of the thiolates was, at the time of presentation of the x-ray diffraction study,
contrary to the accepted picture of thiolate bonding structure [11–14]. A later experimental
study on the system [15], this time using x-ray standing waves, did not confirm the dimer
structure proposed nor did it contradict the dimerization model either. The possibility of finding
another geometry compatible with the grazing incidence x-ray diffraction data obtained by
Fenter et al has thus been opened and our hybrid optimization method has been used on this
difficult multiparameter optimization problem.

3.1. X-ray diffraction theory

It is well known from basic diffraction theory [18, 19] that the amplitude, Aa, of a wave
diffracted by a single atom at r, with an electronic distribution function ρ(r′) around r, can
be calculated in the Born approximation by summing the contributions of all the electrons in
the atoms:

Aa ∝
∫

d3r′ eiq.(r+r′)ρ(r′) = f (q) eiq.r (1)

q being the momentum transfer kf −ki where ki (kf) corresponds to the incident (final) wave
vector. Hence, the atomic form factor f(q) is defined as the Fourier transform of the electronic
density ρ(r′). The atomic form factor is well known for most stable elements [20].
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The amplitude of the wave diffracted by a unit cell of a crystal of Nc atoms will then be

Ac ∝
Nc∑
j=1

fj (q) eiq.rj e− 1
6 〈u2

j 〉q2 = F(q) (2)

which defines the structure factor F(q), where Debye–Waller factors for the thermal motion
of each of the Nc atoms have been included,

〈
u2
j

〉
being the mean square displacement of the

jth molecule.
It is then the electronic density that produces the diffraction signal, and therefore, this is the

important quantity to pursue, since it gives us complete information on the associated structure
we are interested in studying. What we observe, however, is the diffraction intensity which
is directly proportional to the squared amplitude on the diffracted wave, thus the electronic
density of the material cannot be deduced simply by an inverse Fourier transform of the
diffraction intensity. We circumvent the problem of finding the electronic density by a trial
and error method in which a crystal structure, with its corresponding electronic density map, is
proposed and theoretical diffracted intensities are calculated and compared with experimental
ones. An error function is defined to compare calculated versus experimental diffraction
intensities and the crystal structure is adjusted until a—hopefully global—minimum of the
function is obtained.

3.2. The fitting procedure

We have defined the error function as follows:

E(x) = Sχ2(x) = 1

n

∑
z

∑
i

(
ξvi(qz,x) − wi(qz)

σi(qz)

)2

(3)

where vi(qz,x) is equal to
∣∣F calc

(
hi, ki , qz

)∣∣2
for the crystal defined by the parameter vector

x, and wi(qz) is the experimental intensity corresponding to the diffracted (hi, ki) peak
at qz, which is proportional to

∣∣F exp
(
hi, ki , qz

)∣∣2
, ξ is a scale factor chosen to minimize

Sχ2, σi (qz) is the statistical uncertainty in the experimental intensity wi(qz) and the sums
are over the n experimental data points. The problem in fitting the diffraction data is to
find the parameter vector x = (x1, x2, x3, . . . , xN) which defines the crystal structure that
minimizes Sχ2. To this end, one proposes at the beginning an initial or reference structure
which contains the atoms and molecules thought to be found in a single two-dimensional unit
cell. This structure is fed to the algorithm and the algorithm, stochastically but guided by its
rules, modifies the structure according to its N degrees of freedom. These degrees of freedom
may include: (a) translations and rotations of molecules as rigid bodies, (b) translations of
single atoms and (c) change in thermal vibration amplitudes. The distortions or modifications
are applied to the reference structure parametrically through N parameters of modification:
x1, x2, x3, . . . , xN .

We have defined the reference structure by a unit cell of three layers of gold atoms and
four thiol radicals CH3(CH2)9S, with 12 atoms of gold per layer. The reference structure, along
with the parametrization of modifications and the intervals within which each modification
parameter can vary, must ensure that all physically plausible structures (monolayer structures
of c(4 × 2) symmetry and hexagonal symmetry) have been included in the set of structures
which are being tested.

The definition of the reference structure and the parametrized modifications to it have been
taken according to the already presented qualitative analysis of the experimental diffraction
data [10], and following the consistent-structure search performed by the cited authors. The
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Table 1. Characteristics of several representative optimized structures. The type 4g stands for a
4-gauche structure, 2t2g stands for a 2-all-trans + 2-gauche structure and 4t refers to a 4-all-trans
structure; the error function is Sχ2; θ is the tilt angle (in degrees) with respect to the surface normal
and 90◦ − φ is the orientation of the tilt with respect to the next nearest neighbour direction; X–Y
is the minimum distance (in Å) between atoms X and Y and (X–Y)z is the distance projected to the
surface normal, i.e. the vertical distance; (C–C)z refers to the last carbons of inequivalent chains.

Label Type Sχ2 θ φ S–S S–Au C–Au (S–S)z (S–Au)z (C–C)z

A 4g 1.8 39 74 2.3 2.5 2.2 1.5 2.1 0.1
B 4g 1.8 38 81 3.5 2.5 1.9 1.9 2.1 2.5
C 4g 2.1 34 74 2.7 2.8 2.0 1.3 2.7 2.2
D 4g 2.1 33 70 2.1 2.9 3.0 1.0 2.6 0.2
E 2t2g 2.6 29 71 3.5 2.3 2.3 0.6 2.1 1.4
F 2t2g 2.6 27 47 4.8 2.3 2.4 0.8 2.1 1.4
G 4t 5.7 33 63 4.0 2.4 3.1 0.2 2.1 0
H 4g 1.7 37 69 2.3 2.2 2.3 0 2.0 0.1
I 4g 1.4 50 23 2.5 1.7 1.5 0.2 1.6 0.3

modifications to the structure include: the variation in the position of the radicals which
allows (but does not force) them to get close enough to be considered dimerized; variation of
the tilt angle; tilt direction and twist about the hydrocarbon chain axis of the thiol radicals;
lateral relaxation of the first gold layer and vertical relaxation of the first two gold layers.
Furthermore, we have included the S–S vertical distance and the thermal vibration amplitude
as parameters; all these, plus the overall scale, give a total of 43 parameters to fit. The complete
set of parameters specified for the system, represented by the vector x of dimension N, is the
driving force that makes the structure evolve to the one that hopefully produces the measured
diffraction data.

We have explored three different possibilities for the crystal structure, two included in the
search by Fenter et al: one corresponding to a structure in which the thiol radicals have an
all-trans configuration (4-all-trans) and another in which the radicals present a gauche in the
S–C bond (4-gauche); the third case, not explored before, considers the possibility of having
two all-trans radicals and two gauche radicals in the unit cell (2t2g). Let us remark that we
have not, in any way, forced the formation of dimers.

The value used for n in Cross2 was 3 (values greater than 3 create more diversity
than needed, increasing the time of convergence, values smaller than 3 reduce the time of
convergence but optimum solutions are more difficult to find). We apply the mutation operator
to a small subset (around 10 per cent) of the individuals and for each individual only one
parameter is modified. Let us mention that this small value for the mutation probability was
due to the fact that the crossover already produced enough diversity in the population.

The size of the population used in this study was 200.

4. Results

Our results have been summarized in table 1 where we present the characteristics of several
representative optimized structures obtained by our method. Fenter’s disulfide structure (H)
is included for comparison, as well as structure I, which is not acceptable because of the small
interatomic distances but which shows the algorithm is able to find solutions with smaller
error function. Figures 1 and 2 show the experimental diffraction intensities along with the
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0 0.5 1 1.5 0 0.5 1 1.5

Figure 1. Calculated diffraction intensities of the Bragg rods as a function of Qz corresponding
to structures A, B, C and D. The circles represent the experimental data. The calculated intensities
corresponding to Fenter’s disulfide structure (structure H) are plotted for comparison (continuous
line). The lines of intensity corresponding to different structures are so close together that it is
difficult to differentiate one from another, except for the continuous line in the (2, 2) peak. The
purpose of this figure is to show how good the fit is for the 4-gauche structures.

calculated intensities corresponding to the optimized structures (in figure 1 for structures H,
A, B, C and D and in figure 2 for structures H, E, F, G and I). The calculated intensities
corresponding to Fds (structure H) are plotted in each figure for comparison (solid lines).
It can be noted that most of the diffraction peaks are well fitted for all the structures, the
main exceptions being the (0.5, 2) peak and more remarkably, the (2, 2) peak for the 2t2g and
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0 0.5 1 1.5 0 0.5 1 1.5

Figure 2. Calculated diffraction intensities of the Bragg rods as a function of Qz corresponding
to structures E, F, G and I. The circles represent the experimental data. The calculated intensities
corresponding to Fenter’s disulfide structure (structure H) are plotted for comparison (continuous
line). Again, the lines of intensity corresponding to different structures are quite close, except
for the (2, 2) peak, in which we get a flat intensity for the 4-trans structure (G); the line that goes
together with the continuous line corresponds to structure I and the lines in between correspond to
structures E and F. 4-trans structures cannot fit to this peak.

4-all-trans structures, the latter yielding a flat signal, i.e. a diffraction peak (surface Bragg rod)
with no Qz dependence.

Some interesting features may be noted:

• For the case in which the thiol radicals have an all-trans configuration we have obtained
a fit with a minimum Sχ2 of 5.7, which is better than the best fit obtained by Fenter et al
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Figure 3. Schematic top view of structure A. The large spheres represent the gold atoms, the dark
ones represent the sulphur atoms and the small ones represent carbon.

for a 4-all-trans structure (Sχ2 = 16), but still poor compared with the fit achieved for
the other structures.

• For the other cases in which 2 or 4 thiol radicals have a gauche in the S–C bond, we have
obtained several structures whose fit is as good as the fit corresponding to Fds.

• We have been able at arrive at Fds only when we introduced in the initial population of
parameter vectors x, a vector that defines a similar structure. No other structure with all
radicals dimerized has been found.

• We have found several structures, for instance A and D, where radicals coexist with
disulfides: two radicals per disulfide. A schematic of structure A is shown in figure 3.
Other structures, such as B and C, present a minimum S–S distance much smaller than
the 5 Å expected in the hexagonal (

√
3×√

3R30◦) structure but larger than the S–S dimer
bond. A schematic of structure B is shown in figure 4. Starting from random parameters
most of the times, the 4-gauche structure evolves to one of the latter kind.

• We have also found a good fit with the experimental data, although it is not one of the best
fits, for a structure (F) where the sulfurs form a nearly

√
3 × √

3R30◦ lattice. However,
it is important to note that in spite of the spatial array of the sulfur atoms, the overall
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Figure 4. Schematic top view of structure B. The large spheres represent the gold atoms, the dark
ones represent the sulphur atoms and the small ones represent the carbons.

periodicity of this structure is that of a c(4 × 2) cell due to the structural and orientational
differences of the adsorbed molecules.

• A feature always present in a good fit is the nearly hexagonal two-dimensional arrangement
of the hydrocarbon chains, and for the 4-gauche structures, the tilt and orientation of the
chains are quite similar to those of Fds. Less constant are the vertical distance between
sulfurs and that between the last carbons in the chains of inequivalent molecules (see
table 1).

Summarizing, we have found several crystal structures of a monolayer of CH3(CH2)9SH
self-assembled on the (111) surface of gold, compatible with experimental x-ray diffraction
data. Some of the optimized structures do not present dimerization of the adsorbed molecules.
The several optimized structures should be tested against other experimental evidence such as
x-ray standing waves [15], or may be used as starting points for theoretical calculations such
as first principles calculations of bonding energy to further test the dimerization hypothesis.

5. Conclusions

A stochastic search procedure based on a genetic algorithm and simulated annealing has been
proposed to solve complex fitting problems. The method combines the searching abilities
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of a genetic algorithm and simulated annealing to find correct and optimized solutions. The
method is robust and does not need to be fed, at the starting point of the searching procedure,
with solutions already close to physically optimal ones as in the gradient method. The local
search around promising regions in the landscape of solutions is carried out by the simulated
annealing algorithm. Although one cannot state that a global optimum has been found, the
refinement made by the simulated annealing method greatly improves the solutions compared
to those obtained only by GA (not reported here).

The method proposed was applied to a grazing incidence x-ray diffraction problem that
involved more than 40 parameters and from the several optimized solutions obtained; an
important fact was made clear: several different structures may be compatible with grazing
incidence x-ray diffraction experimental data; it is necessary then, that this experimental
technique be complemented with other experimental techniques if the geometrical structure
of a system is to be determined. The consequences of this conclusion should be explored
in future studies. The software written by us and used in this work is available at:
http://campus.mor.itesm.mx/jtorres/GASA/.
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